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Abstract - The parameters  of the KLM  and  Mason’s equivalent circuits in the thickness 

mode are derived to include dielectric, elastic and  piezoelectric loss. The models are 

compared under various boundary  conditions  with  and without acoustic layers to the 

analytical solutions of the wave  equation.  We  show that in the case of a free resonator 

(short circuit on the acoustic  ports)  both  Mason’s circuit and the KLM model produce 

impedance data that is the exact  equivalent of the data produced by the analytical solution. 

In the case where both piezoelectric  surfaces  are rigidly fixed, the analytical solution and 

Mason’s circuit describe impedance data that is associated  with the clamped capacitance 

C,. The KLM circuit was  shown  to  have infinite impedance  at the electric port when the 

acoustics ports were open circuited. In the case where one of the piezoelectric surfaces is 

rigidly fixed the analytical solution and  Mason’s circuits describe an identical quarter 

wavelength resonator whereas the KLM circuit is  shown  to describe a half wave resonator 

under the same conditions. Similar discrepancies  between  the analytical solution and the 

KLM model are observed for  acoustic  elements with large acoustic impedance. It is 

interesting to note that in  the case where  acoustic  layers had lower acoustic impedance than 

the piezoelectric material (low  density/velocity or thin layers) the  KLM  model was found to 

approximate the analytical solution. These discrepancies  between the KLM model and the 

analytical solutions are independent of loss and are also found in cases where loss-less 

resonators are modeled. The limitations discussed above  are important to address due  to 

the wide use of the KLM  model.  Therefore,  we  have  determined  an alternative equivalent 

circuit, which contains all the salient features  of the KLM  but is not limited to low acoustic 

impedance elements 
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I. INTRODUCTION 

Analytical solutions to the wave  equation in piezoelectric  materials can be quite cumbersome 

to derive  from first principles in all  but  a  few  cases. Mason[l],[2] was able to  show  that for one- 

dimensional analysis most of the difficulties in deriving the solutions could be overcome by 

borrowing from network  theory.  He  presented an exact  equivalent  circuit  that  separated the 

piezoelectric material  into  an  electrical  port  and  two  acoustic  ports  through the use of an ideal 

electromechanical  transformer as shown  in  Figure lb. The model has been widely used  for free 

and mass loaded  resonators[3],  transient  response[4],  material  constant  determination[5],  and  a 

host of other applications[6].  One  of  the  perceived  problems  with the model is that it required  a 

negative capacitance at the electrical  port.  Although  Redwood[4]  showed  that this capacitance 

could  be  transformed  to  the  acoustic  side  of  the  transformer  and  treated  like  a length of the 

acoustic line it was still thought  to  be  “un-physical”. In an  effort  to  remove circuit elements 

between the top of the transformer  and the node of the acoustic transmission line Krimholtz, 

Leedom  and Matthae[7] published  an  alternative  equivalent  circuit  as  shown in Figure IC. The 

model is commonly referred  to  as the KLM  model  and  has  been  used extensively in the medical 

imaging community in an  effort  to  design  high  frequency  transducers  [8],[9], multilayers[lO], 

and  arrays[ 111. To investigate the validity of these  models  under  various  boundary conditions a 

comparison was made  between the exact  analytical  solution  for  a  one-dimensional  wave  and the 

Mason  and  KLM  equivalent  circuits.  Additional  acoustic  layers  were  also investigated. 
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11. DESCRIPTION  OF  THE  MODELS 

The KLM  and  Mason’s  model  are  shown  in  Figure  1  along  with the free  resonator equation of 

the thickness mode derived  from the linear  piezoelectric  equations  and the wave equation [3] 

which has  been  adopted by the  IEEE  Standard on Piezoelectricity[l2] for determination of the 

thickness material constants. 

The constants of each  model  are  shown in Table 2. In the  KLM  and  Mason’s equivalent 

circuit an electrical port is connected  to  the  center  node of the two acoustic  ports representing the 

front  and  back  face of the transducer.  On the electrical  port of the transformer all circuit 

elements are standard  electrical  elements  and  the  voltage is related  to the current via V =ZI 

where Z is an electrical  impedance.  On  the  acoustical  side of the transformer the force F and the 

velocity v are related  through F = Z,v where Z, is the specific  acoustic  impedance Z, cc pvA 

where p is the density, v is the  longitudinal  velocity of the piezoelectric  material  and  A is the 

area. It should be noted  that the italic v = du/dt is a  variable of the circuit  model while the 

straight  v is a  constant of the material.  The  transformer is an  ideal  electromechanical  transformer 

that conserves electrical  and  mechanical  power  during  the  transformation.  A voltage V 

transformed  to the acoustic  port is found  to  equal  a  force F = NV or F = $V depending on the 

model  used where N and 4 are  the turns ratio  of the particular  model.  A  current is found to equal 

a velocity v through v = I/N or v = I/$. The  electrical  impedance is transformed to an acoustic 

impedance using Z, = ZN2 or Z, = Z$2. To  transform  specific  acoustic  impedance into electrical 

impedance on the electrical port  one  divides by the square of the turns ratio.  These models allow 

for the calculation of the velocity  and  force  on  any  surface  in the transducer as well as the 

electrical impedance as  seen  from the electrical  port. In an  effort  to  reduce possible confusion 

we will  use only the electrical impedance  for the comparison of the models. 
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The relationship  between the constants of the free resonator  and the KLM and Mason’s 

equivalent circuits are  shown in Table 1. We treat  the  elastic, dielectric and piezoelectric 

constants of the free resonator as complex  quantities as was  outlined by Holland [13] and 

discussed by Berlincourt[ 141, Sittig [ 151, Katz[6], McSkimmin[l7]. To calculate the circuit 

model constants to include losses  proceed as in  Table 2. For  example  using the complex 

material constants the circuit  parameters r, N, 4, Z,, M, C, are  now all complex quantities. 

Identities for  trigonometric  fiulctions  with  complex  arguments  can  be  found by expanding the 

trigonometric fimction in exponential form. A list of these  identities can be found in earlier work 

on equivalent  lumped circuit constants  of  free  piezoelectric  resonators [ 161. 

111. Modeling 

A. Open and Short Circuit Acoustic Ports 

The KLM  and  Mason’s  equivalent  circuits  were  compared  under  short  circuit conditions. The 

material constants used  are  shown in Table 2 along  with  the  equivalent  circuit parameters of each 

mode. The impedance  equations  for the two  models  are  shown in (1) and (2) below.  Upon 

simplification it can be shown  that  these  equations  reduce  to the equation  for the free resonator 

shown in Table 1. 

[(z, /2 + 2, )/ N 2  - zc] 
(2, /2 + z,)/ N 2  

2, = 2, 

5 



‘T /’ z,,, = zc -k x, + - 

where Z, =l/ioC,. Impedance data for  the free resonator,  Mason’s  equivalent circuit and the 

KLM circuit are  shown in Figure 2. The  data  are  identical  and the curves  overlap.  Under  short 

circuit conditions therefore  both of these  models  describe the thickness  extensional impedance 

resonance  and either of these circuits or the  equation  for the free  impedance resonator can be 

used  to determine material  properties. 

The models were  tested  under the condition  where  one  acoustic  port  was open circuited 

(rigidly fixed)  and the other  short-circuited  (free  to  expand).  The  analytical solution is found in 

the same  manner as is done  for the free  resonator  except  now  instead of stress free boundary 

conditions (T(x=O)=T(x=t)=O)  we  have  mixed boundary  conditions (T(x=O)=O and S (x=t)=O). 

Using these boundary  conditions the analytical  solution  for this resonator  geometry is 

which is similar to the free resonator  equation  except  for  a  factor of 2 in the argument  and divisor 

of the tan function. The equations  for  Mason’s  equivalent  circuit  and the KLM equivalent circuit 

for these boundary conditions are. 

The impedance data for  all  three  models  (equation (3) to ( 5 ) )  is shown in Figure 3. The data was 

generated using the constants shown in Table 2. The  analytical  solution is found  to overlap the 
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results from Mason's model. Both  show  a  resonance  at t d v "  = n/2 which shows that at 

resonance the thickness t=h/4 and the sample  resonates  as  a  quarter  wavelength resonator. The 

resonance  frequency of the KLM  model  remained  unchanged  and  resonated  as  a  half wavelength 

resonator (t=h/2). 

The discrepancies  between the KLM  and Mason's model are even  more  apparent in the 

case of a piezoelectric material  rigidly  fixed  at  both  ends.  Both the linear equations of 

piezoelectricity and Mason's model  indicate  that the impedance  across the electrical port would 

be Z = l/ioC, (the impedance  due  to  the  clamped static capacitance of the material). In the KLM 

model the impedance is found  to be infinite across the electrical  port. 

B. Acoustic Elements 

The results of the proceeding  section  suggest it would be informative to investigate the 

impedance of the two models in the case  where  layer/s  are  added  to the thickness resonator. In 

order  to accomplish this we use the network  representation of a  non-piezoelectric solid acoustic 

element as described by Redwood[4]  and McSkimmin[l7]. This  network representation is 

shown in Figure 4. Like Mason's model this representation is the solution to the one- 

dimensional wave  equation  with  open  boundary  conditions. In order  to  emphasize the versatility 

of this representation we have  investigated the response of this  network in the low  and high 

frequency regimes when the front  face of the  layer is acoustically  short  circuited (free to expand) 

and  open circuited (rigidly clamped).  The  back  surface is driven by a sinusoidal force 

F=F,cos(ot). For harmonic  sinusoidal  excitation in a  linear  system the displacement u, of the 

back  face is related  to the velocity v, by v,=iou,. The  acoustic  impedance of the layer  under 

open  and short circuit conditions is 
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1) At high frequencies the acoustic element  goes into resonance.  The elastic properties, 

geometry and boundary conditions determine the resonance frequency. In the case where one 

face of the element is rigidly fixed (open circuit) the resonance  frequency in determined from the 

minimum of Z,,, and the plate is found to resonate at h/4. When the acoustic port is short- 

circuited the element is found  to  resonate  at h/2. The  frequency response (derived from 

equations 6 and 7) of the logarithm of the velocity v is shown in Figure 5 for both the open and 

short circuit acoustic ports. The constants used  for this simulation are shown in the figure 

caption 

2) In the low frequency limit as o+O the tan function tan(oU2v) +oL/2v while the sin(wl/v) 

+ oL/v. The acoustic impedance of  each  element  reduces  to Z, +ipAoL/2 = imo/2, Z, 

+ pAv*/i~L = Ac,,/ioL where m is the mass of the  layer  and c,, is the elastic stiffness. In the 

case where the front surface is rigidly fixed  we note that  at  low frequencies Z,>>Z, 

Z,,, = Z, = Ac,,/ioL (8) 

and the total impedance appears capacitive with a  capacitance C = WAC,,. The strain S = u,/L 

for a sinusoidal force F, = F,cos(ot) is therefore 

Ul - F 
L  ioLZoP,, c,, A 

S=" - - -" Fo cos(wt) 

This is the equation of an elastic solid being  strained (Hooke's Law) by the application of a 

sinusoidal force, which is exactly what  one  would  expect. 
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In the case where the layer is short-circuited the total impedance  at  low  frequency is 

Zshort = 22, = imo (10) 

and the impedance is inductive with  an  inductance L = m the mass of the acoustic layer. The 

displacements of the front  and  back  face ul ,  u2 are  found  to be 

u2 = u1 = ---cos(ot) 1 Fo 
m o2 

which is the equation  for a displacement of a mass  driven  by a harmonic  force. 

C. Layered Transducer Modeling 

The analytical solution for the impedance of a piezoelectric  film on a substrate derived  from the 

wave equation was  determined  by  Lakin,  Kline  and McCarron[l8], A more  recent derivation by 

Lukacs et al[ 191 extended the solution  to  include  loss in the elastic,  dielectric  and piezoelectric 

constants and first order  dispersion in the dielectric  constant.  The solution is valid for all cases 

where the lateral dimensions of the acoustic  layer  and the piezoelectric  layer  are much larger  than 

either layer thickness. In the following  section  we  compare the Mason's  and IUM equivalent 

circuits to the analytical solution for a high  impedance  backing (stainless steel) and a low 

impedance backing (epoxy)  to  investigate the effects of including an acoustic  layer on the 

various models. The models  are  similar  to the models  presented in Figure 1 however  each 

model also has an acoustic  element (ie. backing  layer) as shown in Figure 4 on one of the 

acoustic ports 
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where Z, is 

2, = 

The functions Z, and Z, are the acoustic  elements  of the piezoelectric  defined in Figure 1 

and  Table 1. The functions ZB, and ZB, are the acoustic  elements  (sin  and  tan functions) of the 

backing  layer  shown in Figure 4. The  superscript B is used  to differentiate the backing layer 

impedance elements from the piezoelectric  acoustic  element in equation 14. The geometry 

stiffness, density and  velocity, of the  each of the  backing  layers  are  listed in Table 3. The 

piezoelectric properties used  in this simulation  are  shown in Table  2. 

The results for the epoxy  backed  transducer  are  shown in Figure 6. The analytical 

solution and the results from  Mason's  equivalent  circuit  are  identical  and  overlap. The data from 

the KLM model has similar features  to the other  curves  however the KLM  data  appears  to have a 

higher mechanical Q and the major  resonance is seen  to  occur at a slightly higher frequency.  At 

low  frequencies the data  from the KLM  model  and the Mason's  equivalent circuit begin to 

overlap. 

The analytical solution, Mason's  model  and  the  KLM  equivalent circuit data are shown in 

Figure 7 for the case where the piezoelectric is backed  with stainless steel. The analytical 

soloution and  Mason's  model  overlap  over the entire  spectra. The parallel resonance  frequency 
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shifts down  to h/4 in the  data  determined  from the analytical soloution and  Mason's 

equivalent circuit while the parallel  resonance  frequency of the  KLM  model is found  to be 

considerably  higher.  These  results  suggest  that  caution  should be exercised  when using the KLM 

equivalent circuit to  model  high  specific  impedance  acoustic  elements in the transmission line. 

IV. DISCUSSION 

The proceeding results  suggest  that a problem  exists  when  high  impedance acoustic elements 

are included in the KLM  model.  Closer  examination of the circuit models shown in Figure 1 

indicates  that the source of the  problem  is  that  the  KLM  model is only identical to the Mason's 

equivalent circuit when the acoustic  ports  are  short-circuited  at  the  piezoelectric surface. This 

can be shown by noting  that  one  can  not  transform the parallel  capacitance in the Mason's 

equivalent circuit to a series  capacitance  as  found in the KLM  model  without knowing the full 

acoustic load. As  well the turns  ratio  in the KLM  model is only physical when the acoustic 

ports on the piezoelectric surfaces  are  shorted. The turns  ratio  used  by  Mason's comes directly 

from the linear  equations of piezoelectricity  and  relate  voltage  to  force  and  current to velocity. 

The turns ratio  therefore is a constant  and  should  have  no  frequency  dependence. 

These results suggest  that there are  limits  to the applicability of the KLM  model  when 

acoustic layers are  used.  As ' a general  rule it can be shown  that the sum of the acoustic 

impedances on the front or back  face  due  to  additional  acoustic  elements  must be less than Z, = 

ipvAtan(ol/2v) of the piezoelectric  material  at the frequency  of  interest in order  to  accurately 

model the transducer. The reasons  for  the  successes of the KLM  equivalent circuit in modeling 

response, bandwidth, insertion  loss,  etc.  appears  to  be  due  to the fact  that the model is typically 
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used  with  low  acoustic  impedance  elements  (acoustic  impedance is much  lower than acoustic 

impedance of the piezoelectric  material).  As  well  the  transducer  model  uses  a  real  load for the 

water, which is much smaller  than the acoustic  impedance of the  piezoelectric. 

This means that  at  least  one of the acoustic  ports is almost  a short. In Figure 8 we plot 

the electrical impedance  of the KLM  and  Masonk  model  for the epoxy  resonator shown in Figure 

6 with a  load impedance on  the  front  face of RL = pvA = 265  Rayls  m2.  We have used p = 1000 

kg/m3  and v= 1500 d s .  to  model  transmission  into  water. The area  A is the transducer  area. As 

can be seen from the figure the baselines  of the impedance  data  away  from resonance overlap. 

The resonance of the KLM  model is seen  to  occur  at  a slightly higher  frequency  and has a much 

sharper resonance than  that of Masonls  Model.  It is worth  noting  that if the mechanical Q of the 

piezoelectric material is reduced  by  a  factor of 2  when  calculating the KLM parameters the 

impedance of the KLM  and  Masonk  equivalent  circuits  are  almost identical. This means  that  an 

inaccurate evaluation of the mechanical Q of the  piezoelectric  material  can compensate for the 

approximations used in the KLM  model.  It  should  be  noted  that  although  one can determine a 

good fit to the data using the KLM model in this  case the model looses some of it predictive 

properties due to the adjustments  to  the Q of  the  piezoelectric  material. 

Due to the widespread  use of the KLM  model  and the limitations  that we have discussed 

above we have determined  an  alternative  equivalent  circuit  which  contains  all the salient features 

of the KLM  however it is not  limited  to  low  acoustic  impedance  elements. The model is shown 

in Figure 9. In series on the electrical  side  of  the  transducer  there is a  clamped capacitance and  a 

reactance that is a  function of the clamped  capacitance  and the acoustic  elements. An acoustic 

transmission line is on the acoustic side of the transformer  and like the KLM model the leads 
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from the transformer are shorted to the  center of the transmission line. The elements of the 

model are: 

N = C,h,, 

E S 3 A  C, =- 
t 

1 
i d ,  

Z, =- 

Z, = iz, tan(rtl2) 

2, = p AvD = AJ p cf3 

7 

x = -  (N2Zi + Z,Z, / N 2  + Z i )  - - (N'Z;) " Z, 
0 

- (23) 
zs + Zi? Z, +Z,   N2 

Where Z, and Z, are the sum  of acoustic elements on the front  and back face of the piezoelectric 

material. Z, is the resultant of the parallel combination of the sum of acoustic impedance 

elements of the front  and  back faces of  the  piezoelectric  and  any attached layers The electrical 
- 

impedance of the transducer as seen across the piezoelectric electrical ports is 

Z z = z , + x , + R -  
N 2  

The model has been tested and  found  to reproduce data generated  by Mason's model for the 

open and short acoustic ports as well as  for  the stainless steel and  epoxy backed resonators. 
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IV.  CONCLUSIONS 

The parameters of the KLM  and  Mason’s  equivalent  circuits in the thickness mode were 

derived  to include dielectric,  elastic  and  piezoelectric  loss.  The models were  compared  under 

various  boundary  conditions  with  and  without  acoustic  layers  to the analytical solutions to the 

wave equation. It was shown  that in the case  of a free  resonator  (short  circuit on the acoustic 

ports) both Mason’s  circuit  and  the  KLM  model  produce  impedance  data  that is the exact 

equivalent of the data produced  by the analytical  solution.  While in the case where both 

piezoelectric surfaces are  rigidly  fixed  the  analytical solution and  Mason’s circuit describes 

impedance data that is associated  with  the  clamped  capacitance C,. The KLM circuit was 

shown to have infinite impedance  at  the  electric  port  when  the  acoustics ports were open 

circuited. When  one of the piezoelectric  surfaces  is  rigidly  fixed the analytical solution and 

Mason’s circuits describe  an  identical  quarter  wavelength  resonator  whereas the KLM circuit is 

shown to describe a half  wave  resonator  under  the  same  conditions. Similar discrepancies 

between the analytical solution and the KLM  model  for  acoustic elements with large acoustic 

impedance were discussed. It is interesting  to  note  that  when the acoustic layers had  lower 

acoustic impedance than the piezoelectric  material  (low densityhelocity or thin layers) the KLM 

model approximates the analytical  solution.  These  discrepancies  between the KLM model  and 

the analytical solutions findings  were  determined  to  be  are  independent of loss  and they hold for 

the loss-less resonators. The limitations  discussed  above  are  important  to  address due the wide 

use of the KLM model. Therefore,  we  have  determined  an  alternative  equivalent circuit, which 

contains all the salient  features of the KLM  but  is  not  limited  to  low  acoustic  impedance 

elements 
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resonator  determined  from  Mason’s  equivalent  circuit, the KLM  equivalent circuit and 
the analytical solution. The  analytical  solution  overlaps  impedance  data from Mason’s 
equivalent circuit. The piezoelectric properties  are shown in Table  2. The properties of 
the epoxy are shown in Table  3. 

Figure 7. The resistance and  reactance of a stainless steel backed  thickness extensional 
resonator determined  from  Mason’s  equivalent  circuit,  the  KLM equivalent circuit and 
the analytical solution. The  analytical  solution  overlaps  impedance data from  Mason’s 
equivalent circuit. The piezoelectric  properties  are  from  Table 2. The properties of the 
stainless steel are shown in Table 3. 

Figure 8 The resistance  and  reactance of an  epoxy  backed  thickness extensional 
resonator with an acoustic  load of RL = pvA = 265  Rayls m2.for Mason’s  and the KLM 
equivalent circuit The piezoelectric  properties  are  shown  in Table 2. The properties of 
the epoxy are shown in Table 3. 

Figure 9. A  representation of the KLM  model  which  can  be  used  with high acoustic 
impedance elements.  The  model  parameters  are  defined in the text. 
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Table 1. Sherrit et. al. 

I Free  Resonator 

Z =  

E,, clamped  complex permittivity 

C ;  open circuit complex elastic stiffness 

kt complex  electromechanical  coupling 

k,? = et3  /c;Ef3 = h:3Ef3 / c ;  

S 

Mason's  Model 

E f J  C, =- 
t 

N = C,h3, 

KLM  Model 

z, = p A V ~  = A J ~  C ;  

I 

M = -  h33 
0 2 0  

= iZ,M2 sin(rt / 2) 
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Table 2. Sherrit et. al. 

Material  Constants  and  Geometry of Piezoelectric  Material  (Motorola 3203HD) 
p = 7800 kg/m3  t = 0.001 m Diameter = 0.0 15 m 

cf3 (x  10" N/m2) = 1.77  (1 + 0.023i) 
&s3 (x lo-* F/m) = 1.06 (1 - 0.053i) 
h,, (x lo9 V/m) = 2.19  (1 + 0.029i) 

kt = 0.536 ( 1 - 0.0093i) 
, CO (nF) = 1.87 (1 - 0.053i) 

N (Urn) = 4.11 (1 + 0.lOi) 
V ,  ( d s )  = 4674  (1 + 0.012i) 

r/o ( X I O ~  s/m) = 2.10  (1 - 0.012i) 
Ma (x105  Vs/mkg) = 3.33  (1 + 0.017i) 

Table 3. Sherrit et. al. 

Material  Constants  and  Geometry of the  backing  materials 
t = 0.001 m Diameter = 0.015 m 

EPOXY Stainless  Steel 
p(kg/m3) = 1100 p(kg/m') = 7890 

V ,  ( d s )  = 2200 (1 + 0.05) V ,  (m/s) = 5790  (1 + 0.001i) 
T/o ( x ~ O - ~   d m )  = 4.53  (1 - 0.05i) T/o (x104 dm) = 1.727  (1 - 0.001i) 

cf3 (x lo9 N/m2) = 5.3  (1 + 0.li) CR (x  10"  N/m2) = 2.645 (1 + 0.002i) 
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a) Free TE resonator 

b) Mason's Model 

KLM Model 

Figure 1 .  Sherrit et. al. 
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Figure 4. Sherrit et. al. 
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Figure 9. Sherrit et. al. 
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